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What is NLP?

A field of research at the intersection of computer science, linguistics,
and artificial intelligence that takes the naturally spoken or written

language of humans and processes it with machines to automate or
help in certain tasks
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How the computer sees text
Spot the odd one out:

[112, 97, 116, 114, 105, 99, 107, 32, 108, 97, 117, 98]
[80, 65, 84, 82, 73, 67, 75, 32, 76, 65, 85, 66]
[76, 101, 118, 105, 32, 65, 99, 107, 101, 114, 109, 97, 110]
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ASCII

American Standard Code for Information Interchange

Unicode is the new standard.

Source: Wikipedia



https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg
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Random strings

The built-in chr function turns numbers into characters.
rnd.seed(1)

chars = [chr(rnd.randint(32, 127)) for _ in range(10)]
chars

['E', ',", 'h', )", k', '%', 'o', """, 'e', '"!']

" ".join(chars)
'E,h)k%o 0!

"".join([chr(rnd.randint(32, 127)) for _ in range(50)])
"1g&§9R42t+ < .Rdww~v-)"'_]6Y! \\q(x-Oh>g#f5QY#d8K1:TpI"

"".join([chr(rnd.randint(@, 128)) for _ in range(50)])

"RA\Xx0fD\x190bW\Xx07\x1a\x19h\x16\tCg~\x17}d\x1b%9S6\x08 "\n\x17\x0foW\x19Gs\\I>.

X\x177AgM\x03\x00x '
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Escape characters

print("Hello,\tworld!")

Hello, world!

print("Line 1\nLine 2")

Line 1
Line 2

print("Patrick\rLaub")

Laubick

print("C:\tom\new folder")

C: om
ew folder

Escape the backslash:

print("C:\\tom\\new folder")

C:\tom\new folder

repr("Hello,\rworld!")

"'Hello, \\rworld!""
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Non-natural language processing I

How would you evaluate

10 + 2 * -3
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Non-natural language processing II
Python first tokenizes the string:

import tokenize
import io

code = "10 + 2 * -3"
tokens = tokenize.tokenize(io.BytesIO(code.encode("utf-8")).readline)
for token in tokens:

print(token)

TokenInfo(type=63 (ENCODING), string='utf-8', start=(0, 0), end=(0, 0), line='")
TokenInfo(type=2 (NUMBER), string='10', start=(1, 0), end=(1, 2), line='10 + 2 * -3')
TokenInfo(type=54 (OP), string='+"', start=(1, 3), end=(1, 4), line='10 + 2 * -3')
TokenInfo(type=2 (NUMBER), string='2"', start=(1, 5), end=(1, 6), line='10 + 2 * -3')
TokenInfo(type=54 (OP), string='%', start=(1, 7), end=(1, 8), line='10 + 2 * -3')
TokenInfo(type=54 (OP), string='-', start=(1, 9), end=(1, 10), line='10 + 2 * -3')
TokenInfo(type=2 (NUMBER), string='3"', start=(1, 10), end=(1, 11), line='10 + 2 % -3')
TokenInfo(type=4 (NEWLINE), string='"', start=(1, 11), end=(1, 12), line='")
TokenInfo(type=0 (ENDMARKER), string='"', start=(2, 0), end=(2, 0), line='")
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Non-natural language processing III

Python needs to parse the tokens into an abstract syntax tree.

import ast
print(ast.dump(ast.parse("10 + 2 = -3"), indent="

Module(
body=[
Expr(
value=Bin0Op(
left=Constant(value=10),
0p=Add(),
right=Bin0p(
left=Constant(value=2),
op=Mult(),
right=UnaryOp(
op=USub(),
operand=Constant(value=3)))))1,
type_ignores=[])

"))

Exp

V

Add

10

V

v

Muli

USul

vV
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Non-natural language processing IV

The abstract syntax tree is then compiled into bytecode.
import dis

def expression(a, b, c):
return a + b * -c

dis.dis(expression)

3 ® RESUME 0

4 2 LOAD_FAST 0 (a)
4 LOAD_FAST 1 (b)
6 LOAD_FAST 2 (c)

8 UNARY_NEGATIVE
10 BINARY_OP

14 BINARY_OP

18 RETURN_VALUE

S Ul
~~
+ X
~—



ChatGPT tokenization

https://platform.openai.com/tokenizer

Example of GPT 3.5/4’s tokenization
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https://platform.openai.com/tokenizer
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Applications of NLP in Industry

1) Classifying documents: Using the language within a body of text to
classify it into a particular category, e.g.:

e Grouping emails into high and low urgency
e Movie reviews into positive and negative sentiment (i.e. sentiment
analysis)

e Company news into bullish (positive) and bearish (negative)
statements

2) Machine translation: Assisting language translators with machine-
generated suggestions from a source language (e.g. English) to a
target language

12/88



-y

Applications of NLP in Industry

3) Search engine functions, including:

e Autocomplete

e Predicting what information or website user is seeking

4) Speech recognition: Interpreting voice commands to provide
information or take action. Used in virtual assistants such as Alexa,
Sirl, and Cortana
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Deep learning & NLP?

Simple NLP applications such as spell checkers and synonym
suggesters do not require deep learning and can be solved with
deterministic, rules-based code with a dictionary/thesaurus.

More complex NLP applications such as classifying documents,
search engine word prediction, and chatbots are complex enough to
be solved using deep learning methods.
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NLP In 1966-1973 #1

A typical story occurred in early machine translation efforts,
which were generously funded by the U.S. National Research
Council in an attempt to speed up the translation of Russian
scientific papers in the wake of the Sputnik launch in 1957. It was
thought initially that simple syntactic transformations, based on
the grammars of Russian and English, and word replacement
from an electronic dictionary, would suffice to preserve the exact
meanings of sentences.

Source: Russell and Norvig (2016), Artificial Intelligence: A Modern Approach, Third Edition, p. 21.
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NLP In 1966-1973 #2

The fact is that accurate translation requires background
knowledge in order to resolve ambiguity and establish the
content of the sentence. The famous retranslation of “the spirit is
willing but the flesh is weak™ as “the vodka is good but the meat
is rotten” illustrates the difficulties encountered. In 1966, a report
by an advisory committee found that “there has been no machine
translation of general scientific text, and none is in immediate
prospect.” All U.S. government funding for academic translation
projects was canceled.

Source: Russell and Norvig (2016), Artificial Intelligence: A Modern Approach, Third Edition, p. 21.
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High-level history of deep learning

A brief history of deep learning.

Source: Krohn (2019), Deep Learning Illlustrated, Figure 2-3.
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Downloading the dataset

Look at the (U.S.) National Highway Traffic Safety Administration’s
(NHTSA) National Motor Vehicle Crash Causation Survey (NMVCCS)
dataset.

from pathlib import Path

if not Path("NHTSA_NMVCCS_extract.parquet.gzip").exists():

print("Downloading dataset")
'wget https://github.com/JSchelldorfer/ActuarialDataScience/raw/master/12%20-%20NLP%

df = pd.read_parquet("NHTSA_NMVCCS_extract.parquet.gzip")
print(f"shape of DataFrame: {df.shape}")

shape of DataFrame: (6949, 16)
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https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812506

Features

level 0, index, SCASEID: all useless row numbers
SUMMARY _EN and SUMMARY _GE: summaries of the accident
NUMTOTYV: total number of vehicles involved in the accident
WEATHER1 to WEATHERS (not one-hot):

WEATHER1:
WEATHER?2:
WEATHER3:
WEATHERA4:
WEATHERS:
WEATHERG:
WEATHER?7:
WEATHERS:

cloudy

SNOW

fog, smog, smoke

rain

sleet, hail (freezing drizzle or rain)
blowing snow

severe crosswinds

other

e INJSEVA and INJSEVB: injury severity & (binary) presence of bodily injury

-y

Source: JSchelldorfer’s GitHub.
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https://github.com/JSchelldorfer/ActuarialDataScience/blob/master/12%20-%20NLP%20Using%20Transformers/Actuarial_Applications_of_NLP_Part_1.ipynb
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Crash summaries

0
1
2

6946
6947
6948

Name:

df["SUMMARY_EN"]

V1, a 2000 Pontiac Montana minivan, made a lef ...
The crash occurred in the eastbound lane of a
This crash occurred just after the noon time h...

The crash occurred in the eastbound lanes of a...

This single-vehicle crash occurred in a rural ...

This two vehicle daytime collision occurred mi ...
SUMMARY_EN, Length: 6949, dtype: object

df[ "SUMMARY_EN"].map(lambda summary: len(summary)).hist(grid=False);
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A crash summary

df [ "SUMMARY_EN"].iloc[1]

"The crash occurred in the eastbound lane of a two-lane, two-way asphalt roadway on level
grade. The conditions were daylight and wet with cloudy skies in the early afternoon on a
weekday.\t\r \r V1, a 1995 Chevrolet Lumina was traveling eastbound. V2, a 2004 Chevrolet
Trailblazer was also traveling eastbound on the same roadway. V2, was attempting to make a
left-hand turn into a private drive on the North side of the roadway. While turning V1
attempted to pass V2 on the left-hand side contacting it's front to the left side of V2.
Both vehicles came to final rest on the roadway at impact.\r \r The driver of V1 fled the
scene and was not identified, so no further information could be obtained from him. The
Driver of V2 stated that the driver was a male and had hit his head and was bleeding. She
did not pursue the driver because she thought she saw a gun. The officer said that the car
had been reported stolen.\r \r The Critical Precrash Event for the driver of V1 was this
vehicle traveling over left lane line on the left side of travel. The Critical Reason for
the Critical Event was coded as unknown reason for the critical event because the driver was
not available. \r \r The driver of V2 was a 41-year old female who had reported that she had
stopped prior to turning to make sure she was at the right house. She was going to show a
house for a client. She had no health related problems. She had taken amoxicillin. She
does not wear corrective lenses and felt rested. She was not injured in the crash.\r \r The
Critical Precrash Event for the driver of V2 was other vehicle encroachment from adjacent
lane over left lane line. The Critical Reason for the Critical Event was not coded for this
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Carriage returns

print(df["SUMMARY_EN"].iloc[1])

The Critical Precrash Event for the driver of V2 was other vehicle encroachment from adjacent
lane over left lane line. The Critical Reason for the Critical Event was not coded for this
vehicle and the driver of V2 was not thought to have contributed to the crash.r corrective

lenses and felt rested. She was not injured in the crash. of V2. Both vehicles came to
final rest on the roadway at impact.

# Replace every \r with \n
def replace_carriage_return(summary):
return summary.replace("\r", "\n")

df["SUMMARY_EN"] = df["SUMMARY_EN"].map(replace_carriage_return)
print(df["SUMMARY_EN"].iloc[1][:500])

The crash occurred in the eastbound lane of a two-lane, two-way asphalt roadway on level

grade. The conditions were daylight and wet with cloudy skies in the early afternoon on a
weekday.

V1, a 1995 Chevrolet Lumina was traveling eastbound. V2, a 2004 Chevrolet Trailblazer was
also traveling eastbound on the same roadway. V2, was attempting to make a left-hand turn

into a private drive on the North side of the roadway. While turning V1 attempted to pass V2
on the left-hand side contactin
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Target

Predict number of vehicles in the  Simplify the target to just:
crash.

df["NUMTOTV"].value_counts()\
.sort_index()

e 1vehicle

e 2 vehicles
NUMTOTV

1 1822 ® 3+ vehicles

2 4151

3 783

4 150 df["NUM_VEHICLES"] = \

> 34 df["NUMTOTV"].map(lambda x: \

6 5 str(x) if x < 2 else "3+")

/ 2 df["NUM_VEHICLES"].value_counts()\
g 1 .sort_index()

Name: count, dtype: 1nt64

NUM_VEHICLES

np.sum(df["NUMTOTV"] > 3) ; 1??%
3+ 976

193 Name: count, dtype: inté64
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Just ignore this for now...

rnd.seed(123)

for i, summary in enumerate(df["SUMMARY_EN"]):

word_numbers = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nin
num_cars = 10
new_car_nums = [f"V{rnd.randint(100, 10000)}" for _ in range(num_cars)]
num_spaces = 4
for car in range(1l, num_cars+1):
new_num = new_car_nums[car-1]
summary = summary.replace(f"V-{car}", new_num)
summary = summary.replace(f"Vehicle {word_numbers[car-1]}", new_num).replace(f"v
summary = summary.replace(f"Vehicle #{word_numbers[car-1]}", new_num).replace(f"
summary = summary.replace(f"Vehicle {car}", new_num).replace(f"vehicle {car}", n
summary = summary.replace(f"Vehicle #{car}", new_num).replace(f"vehicle #{car}",
summary = summary.replace(f"Vehicle # {car}", new_num).replace(f"vehicle # {car}

for j in range(num_spaces+1):
summary = summary.replace(f"V{"' 'xjf{car}", new_num).replace(f"V{' 'sjlidcar
summary = summary.replace(f"v{' 'xj}{car}", new_num).replace(f"v{' 'xj}l#d{car

df.loc[i, "SUMMARY_EN"] = summary
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Convert y to integers & split the data

from sklearn.preprocessing import LabelEncoder
target_labels = df["NUM_VEHICLES"]

target = LabelEncoder().fit_transform(target_labels)
target

array([1, 1, 1, ..., 2, 0, 1])

weather_cols = [f"WEATHER{i}" for i in range(1, 9)]
features = df[["SUMMARY EN"] + weather_cols]

X_main, X_test, y_main, y_test = \
train_test_split(features, target, test_size=0.2, random_state=1)

# As 0.25 x 0.8 = 0.2
X_train, X_val, y_train, y_val = \
train_test_split(X_main, y_main, test_size=0.25, random_state=1)

X_train.shape, X_val.shape, X_test.shape
((4169, 9), (1390, 9), (1390, 9))
print([np.mean(y_train = y) for y in [0, 1, 211)

[0.25833533221396016, 0.6032621731830176, 0.1384024946030223]
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Grab the start of a few summaries

2532
6209
2561

Name:

2532
6209
2561

Name:

2532
6209
2561

Name:

first_summaries = X_train["SUMMARY_EN"].iloc[:3]
first_summaries

This crash occurred in the early afternoon of

This two-vehicle crash occurred in a four-legg...

The crash occurred in the eastbound direction
SUMMARY_EN, dtype: object

first_words = first_summaries.map(lambda txt: txt.split(" ")[:7])
first_words

[This, crash, occurred, in, the, early, aftern...

[This, two-vehicle, crash, occurred, in, a, fo...

[The, crash, occurred, in, the, eastbound, dir...
SUMMARY_EN, dtype: object

start_of_summaries = first_words.map(lambda txt: " ".join(txt))
start_of_summaries

This crash occurred in the early afternoon

This two-vehicle crash occurred in a four-legged

The crash occurred in the eastbound direction
SUMMARY_EN, dtype: object
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Count words in the first summaries

from sklearn.feature_extraction.text import CountVectorizer

vect = CountVectorizer()

counts = vect.fit _transform(start_of summaries)
vocab = vect.get_feature_names_out()
print(len(vocab), vocab)

13 ['afternoon' 'crash' 'direction' 'early' 'eastbound' 'four' 'in' 'legged'
'occurred' 'the' 'this' 'two' 'vehicle']

counts

<3x13 sparse matrix of type '<class 'numpy.int64'>’
with 21 stored elements in Compressed Sparse Row format>

counts.toarray()

array([[1, 1, ©, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0],
[01 1’ 0' 0' 0’ 1' 1’ 17 11 0’ 17 1’ 1]’
[0, i, 1, o, 1, 0, 1, 0, 1, 2, 0, O, 011)
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Encode new sentences to BoW

vect.transform([
"first car hit second car in a crash",
"ipad os 16 beta released",

D

<2x13 sparse matrix of type '<class 'numpy.int64'>'
with 2 stored elements 1in Compressed Sparse Row format>

vect.transform([
"first car hit second car in a crash",
"ipad os 18 beta released",

1) .toarray()

array([[o0, 1, 0, 0, 0, 0, 1, 0, 0, 0, O,
(o, 0, 0, 0, 0, ©0, 0, 0, @, 0, O

—_
[SE
N

print(vocab)

['afternoon' 'crash' 'direction' 'early' 'eastbound' 'four' 'in

'occurred' 'the' 'this' 'two' 'vehicle']

'legged’
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Bag of n-grams

vect = CountVectorizer(ngram_range=(1, 2))
counts = vect.fit _transform(start_of_ summaries)
vocab = vect.get_feature_names_out()
print(len(vocab), vocab)

27 ['afternoon' 'crash' 'crash occurred' 'direction' ‘'early'
'early afternoon' 'eastbound' 'eastbound direction' 'four' 'four legged'
"in' 'in four' 'in the' 'legged' 'occurred' 'occurred in' 'the'
"the crash' 'the early' 'the eastbound' 'this' 'this crash' 'this two'
"two' 'two vehicle' 'vehicle' 'vehicle crash']

counts.toarray()

array([([2, 1, 1, 0, 1, 1, o0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, o0, 1, 1,
0, 0, 0, 0, 0],
(e, 1, 1, o, ¢, ¢, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, O,
1, 1, 1, 1, 11,
[01 1,1, 1, o0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 2, 1, 0, 1, O, O,
o, 0, 0, 0, 011)

See: Google Books Ngram Viewer


https://books.google.com/ngrams
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TEF-1DF

Stands for term frequency-inverse document frequency.

Infographic explaining TF-IDF

Source: FiloTechnologia (2014), A simple Java class for TF-IDF scoring, Blog post.



http://filotechnologia.blogspot.com/2014/01/a-simple-java-class-for-tfidf-scoring.html
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Count words in all the summaries

vect = CountVectorizer()
vect.fit(X_train["SUMMARY_EN"1])

vocab = list(vect.get_feature_names_out())
len(vocab)

18866
vocab[:5], vocab[len(vocab)//2:(len(vocab)//2 + 5)], vocab[-5:]
(['e0', '000', '000lbs', '003', '005'],

[ 'swinger', 'swinging', 'swipe', 'swiped', 'swiping'l],
['zorcor', 'zotril', 'zx2', 'zx5', 'zyrtec'])
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Create the X matrices

def vectorise dataset(X, vect, txt_col="SUMMARY EN", dataframe=False):
X_vects = vect.transform(X[txt_col]).toarray()
X_other = X.drop(txt_col, axis=1)

if not dataframe:
return np.concatenate([X_vects, X_other], axis=1)
else:
# Add column names and indices to the combined dataframe.
vocab = list(vect.get_feature_names_out())
X_vects_df = pd.DataFrame(X_vects, columns=vocab, index=X.index)
return pd.concat([X_vects_df, X_other], axis=1)

X_train_bow = vectorise dataset(X_train, vect)
X_val_bow = vectorise dataset(X val, vect)
X_test_bow = vectorise dataset(X_test, vect)
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Check the input matrix

vectorise _dataset(X_train, vect, dataframe=True)

00 000 o000lbs 003 005 007 ooam oopm o00Ly
2532 0 O o) o) 0 o) 0 0 0
6200 0 O o) 0 O o) 0 o) 0
2561 O O o) 0 O o) 0 0 0
6882 0O O o) 0 O 0 0 0 0
2000 0 O o) 0 O o) 0 0 0
6356 O o) 0) o) 0 o) o) o) o)

4160 Tows x 18874 columns
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Make a simple dense model

num_features

= X_train_bow.shape[1]
num_cats = 3 #

X_

1, 2, 3+ vehicles

def build_model(num_features, num_cats):
random.seed(42)

model = Sequential([
Input((num_features,)),
Dense(100, activation="relu"),
Dense(num_cats, activation="softmax")

D)
topk = SparseTopKCategoricalAccuracy(k=2, name="topk")
model.compile("adam", "sparse_categorical_crossentropy",

metrics=["accuracy", topk])

return model

34 /88



-y

Inspect the model

model = build_model(num_features, num_cats)
model.summary()

Model: "sequential"

Layer (type) Output Shape Param #
dense (Dense) (None, 100) 1,887,500
dense 1 (Dense) (None, 3) 303

Total params: 1,887,803 (7.20 MB)
Trainable params: 1,887,803 (7.20 MB)
Non-trainable params: 0 (0.00 B)
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Fit & evaluate the model

es = EarlyStopping(patience=1, restore_best_weights=True,
monitor="val_accuracy", verbose=2)

%time hist = model.fit(X_train_bow, y_train, epochs=10, \
callbacks=[es], validation_data=(X_val_bow, y_val), verbose=0);

Epoch 5: early stopping
Restoring model weights from the end of the best epoch: 4.

CPU times: user 31.5 s, sys: 2.1 s, total: 33.6 s
wall time: 11.1 s

model.evaluate(X_train_bow, y_train, verbose=0)

[0.002541527384892106, 1.0, 1.0]

model.evaluate(X_val_bow, y_val, verbose=0)

[2.776606559753418, 0.9453237652778625, 0.9949640035629272]

As this happens to be the best in validation set, we can check the
performance on the test set.

model.evaluate(X_test_bow, y_test, verbose=0)

[0.1902949959039688, 0.9374100565910339, 0.9971222877502441]
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The max_features value

vect = CountVectorizer(max_features=10)
vect.fit(X_train["SUMMARY_EN"])

vocab = vect.get_feature_names_out()
len(vocab)

10

print(vocab)

['and' 'driver' 'for' 'in' 'lane' 'of' 'the' 'to' 'vehicle'

'was']

37/88



-y

What is left?

for i in range(3):
sentence = X_train["SUMMARY_EN"].iloc[1i]
for word in sentence.split(" ")[:10]:
word_or_gn = word if word in vocab else "?"

print(word_or_gn, end=" ")
print("\n")

? ?2 ?2 in the ? ?2 of ? ?
?2?2?2?2in ? ? 2?2?72
? ?2 ?2 1in the ? ?2 of ?2 ?

for i in range(3):
sentence = X_train["SUMMARY EN"].iloc[1i]
num_words = 0
for word in sentence.split(" "):
if word in vocab:
print(word, end=" ")
num_words += 1
if num_words = 10:
break
print("\n")

in the of in the of of was and was
in and of in and for the of the and

in the of to was was of was was and
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Remove stop words

vect = CountVectorizer(max_features=10, stop_words="english")
vect.fit(X_train["SUMMARY_EN"1])

vocab = vect.get_feature_names_out()

len(vocab)

10
print(vocab)

['coded' 'crash' 'critical' 'driver' 'event' 'intersection' 'lane' 'left'
'roadway' 'vehicle']

for i in range(3):
sentence = X_train["SUMMARY EN"].iloc[1i]
num_words = 0
for word in sentence.split(" "):
if word in vocab:
print(word, end=" ")
num_words += 1
if num_words = 10:
break
print("\n")

crash intersection roadway roadway roadway intersection lane lane intersection driver
crash roadway left roadway roadway roadway lane lane roadway crash

crash vehicle left left vehicle driver vehicle lane lane coded
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Keep 1,000 most {requent words

1000

['10'

vect = CountVectorizer(max_features=1_000, stop_words="english")
vect.fit(X_train["SUMMARY_EN"1])

vocab = vect.get_feature_names_out()

len(vocab)

print(vocab[:5], vocab[len(vocab)//2:(len(vocab)//2 + 5)]1, vocab[-5:1)

"105' '113"' '12' '15'] ['interruption' 'intersected' 'intersecting' 'intersection'

"interstate'] ['year' 'years' 'yellow' 'yield' 'zone']

Create the X matrices:

X_train_bow = vectorise dataset(X_train, vect)
X_val_bow = vectorise dataset(X_ val, vect)
X_test _bow = vectorise dataset(X test, vect)
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What is left?

for i in range(10):
sentence = X_train["SUMMARY_EN"].iloc[1i]
num_words = 0
for word in sentence.split(" "):
if word in vocab:
print(word, end=" ")
num_words += 1
if num_words = 10:
break
print("\n")

crash occurred early afternoon weekday middle suburban intersection consisted lanes
crash occurred roadway level consists lanes direction center left turn

crash occurred eastbound direction entrance ramp right curved road uphill

crash occurred straight roadway consists lanes direction center left turn

collision occurred evening hours crash occurred level bituminous roadway residential
vehicle crash occurred daylight location lane undivided left curved downhill

vehicle crash occurred early morning daylight hours roadway traffic roadway

crash occurred northbound lanes northbound southbound slightly street curved posted
crash occurred eastbound lanes access highway weekend roadway consisted lanes

collision occurred intersection north south traffic controlled stop roadways left
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Check the input matrix

vectorise _dataset(X_train, vect, dataframe=True)

10 105 113 12 15 150 16 17 18 180 .. Yyield zo1
2532 O O O O 0 O O O O O o) O
6200 O O O O 0 O O O O O 0 O
2561 1 O 1 O O O O O O O 0) 0
6882 0 O O O O O O O O O 0 0
200 0 O O O 0 O O O O O 0 0
6356 O O O O O O O O O O 0) 0

4169 TOWS x 1008 columns
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Make & inspect the model

num_features = X_train_bow.shape[1]
model = build_model(num_features, num_cats)
model.summary()

Model: "sequential 1"

Layer (type) Output Shape Param #
dense 2 (Dense) (None, 100) 100,900
dense 3 (Dense) (None, 3) 303

Total params: 101,203 (395.32 KB)
Trainable params: 101,203 (395.32 KB)
Non-trainable params: 0 (0.00 B)

43/ 88



-y

Fit & evaluate the model

es = EarlyStopping(patience=1, restore_best_weights=True,
monitor="val_accuracy", verbose=2)

%time hist = model.fit(X_train_bow, y_train, epochs=10, \
callbacks=[es], validation_data=(X_val_bow, y_val), verbose=0);

Epoch 3: early stopping
Restoring model weights from the end of the best epoch: 2.

CPU times: user 2.69 s, sys: 345 ms, total: 3.04 s
wall time: 2.92 s

model.evaluate(X_train_bow, y_train, verbose=0)
[0.1021684780716896, 0.9815303683280945, 0.9990405440330505]
model.evaluate(X_val_bow, y_val, verbose=0)

[2.4335882663726807, 0.9381294846534729, 0.9942445755004883]
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Keep 1,000 most {requent words

1000

['10'

vect = CountVectorizer(max_features=1_000, stop_words="english")
vect.fit(X_train["SUMMARY_EN"1])

vocab = vect.get_feature_names_out()

len(vocab)

print(vocab[:5], vocab[len(vocab)//2:(len(vocab)//2 + 5)], vocab[-5:])

"105' '113"' '12' '15'] ['interruption' 'intersected' 'intersecting' 'intersection'

"interstate'] ['year' 'years' 'yellow' 'yield' 'zone']
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[nstall spacy

I'pip install spacy
'python -m spacy download en_core_web_sm

import spacy

nlp = spacy.load("en_core_web_sm")
doc = nlp("Apple is looking at buying U.K. startup for $1 billion")
for token in doc:

print(token.text, token.pos_, token.dep_, token.lemma_)

Apple PROPN nsubj Apple
is AUX aux be

looking VERB ROOT look
at ADP prep at

buying VERB pcomp buy
U.K. PROPN dobj U.K.
startup NOUN dobj startup
for ADP prep for

$ SYM quantmod $

1 NUM compound 1

billion NUM pobj billion
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Stemming

“Stemming refers to the process of removing suffixes and
reducing a word to some base form such that all different
variants of that word can be represented by the same form (e.g.,
“car” and “cars” are both reduced to “car”). This is accomplished
by applying a fixed set of rules (e.g., if the word ends in “-es,”
remove “-es”). More such examples are shown in Figure 2-7.
Although such rules may not always end up in a linguistically
correct base form, stemming is commonly used in search engines
to match user queries to relevant documents and in text
classification to reduce the feature space to train machine
learning models.”

Q yurce: Vajjala et al. (2020), Practical natural language processing: a comprehensive guide to building real-world NLP systems, O’Reilly Media.
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Lemmatization

“Lemmatization is the process of mapping all the different forms
of a word to its base word, or lemma. While this seems close to
the definition of stemming, they are, in fact, different. For
example, the adjective “better,” when stemmed, remains the
same. However, upon lemmatization, this should become “good,”
as shown in Figure 2-7. Lemmatization requires more linguistic
knowledge, and modeling and developing efficient lemmatizers
remains an open problem in NLP research even now.”

Q yurce: Vajjala et al. (2020), Practical natural language processing: a comprehensive guide to building real-world NLP systems, O’Reilly Media.



Stemming and lemmatizing

Stemming Lemmatization
adjustable -> adjust was -> (to) be
formality -> formaliti better -> good
formaliti ->formal  meeting -> meeting

airliner -> airlin
Examples of stemming and lemmatization
Original: “The striped bats are hanging on their feet for best”

Stemmed: “the stripe bat are hang on their feet for best”

Lemmatized: “the stripe bat be hang on their foot for good”

jg / Source: Kushwah (2019) What is difference between stemming and lemmatization?, Quora.
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https://www.quora.com/What-is-difference-between-stemming-and-lemmatization
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Examples

Stemmed
organization » organ
civilization » civil
information » inform

consultant » consult

Lemmatized

‘T, ‘will’, ‘be’, ‘back’, *’]

|‘here’, ‘be’, look’, ‘at’, ‘you’,
ckida’ c. ’]
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[.emmatize the text

def lemmatize(txt):
doc = nlp(txt)
good_tokens = [token.lemma_.lower() for token in doc \
if not token.like_num and \
not token.is_punct and \
not token.is_space and \
not token.is_currency and \
not token.is_stop]
return " ".join(good_tokens)
test_str = "Incident at 100kph and '10 incidents -13.3%' are incidental?\t $5"
lemmatize(test _str)

"incident 100kph incident incidental'

test_str = "I interviewed 5-years ago, 150 interviews every year at 10:30 are.."
lemmatize(test _str)

‘interview year ago interview year 10:30'
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Apply to the whole dataset

df["SUMMARY_EN_LEMMA"] = df["SUMMARY_EN"].map(lemmatize)

weather_cols = [f"WEATHER{i}" for i in range(1, 9)]
features = df[["SUMMARY EN LEMMA"] + weather_cols]

X_main, X_test, y_main, y_test = \
train_test_split(features, target, test_size=0.2, random_state=1)

# As 0.25 x 0.8 = 0.2
X_train, X_val, y_train, y_val = \
train_test_split(X_main, y_main, test_size=0.25, random_state=1)

X_train.shape, X_val.shape, X_test.shape

((4169, 9), (1390, 9), (1390, 9))
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What is left?

print("Original:", df["SUMMARY_EN"].iloc[0][:250])

Original: V6357885318682, a 2000 Pontiac Montana minivan, made a left turn from a private
driveway onto a northbound 5-lane two-way, dry asphalt roadway on a downhill grade. The
posted speed limit on this roadway was 80 kmph (50 MPH). V6357885318682 entered t

print("Lemmatized:", df["SUMMARY_EN_LEMMA"].iloc[0][:250])

Lemmatized: v6357885318682 pontiac montana minivan left turn private driveway northbound lane
way dry asphalt roadway downhill grade post speed 1limit roadway kmph mph v6357885318682 enter
roadway cross southbound lane enter northbound lane left turn lane way int

print("Original:", df["SUMMARY_EN"].iloc[1][:250])
Original: The crash occurred in the eastbound lane of a two-lane, two-way asphalt roadway on
level grade. The conditions were daylight and wet with cloudy skies in the early afternoon
on a weekday.
V342542243, a 1995 Chevrolet Lumina was traveling eastbou

print("Lemmatized:", df["SUMMARY_EN_LEMMA"].iloc[1][:250])

Lemmatized: crash occur eastbound lane lane way asphalt roadway level grade condition
daylight wet cloudy sky early afternoon weekday v342542243 chevrolet lumina travel eastbound
v342542269 chevrolet trailblazer travel eastbound roadway v342542269 attempt left h
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Keep 1,000 most frequent lemmas

vect = CountVectorizer(max_features=1_000, stop_words="english")
vect.fit(X_train["SUMMARY_EN_ LEMMA"])

vocab = vect.get_feature_names_out()

len(vocab)

1000
print(vocab[:5], vocab[len(vocab)//2:(len(vocab)//2 + 5)], vocab[-5:])

['10' '150' '48kmph' '4x4' '56kmph'] ['let' 'level' 'lexus' 'license' 'light'] ['yaw'
'vellow' 'yield' 'zone']

Create the X matrices:

X_train_bow = vectorise_dataset(X_train, vect, "SUMMARY_EN_LEMMA™)
X_val _bow = vectorise dataset(X_val, vect, "SUMMARY EN LEMMA")
X_test_bow = vectorise_dataset(X_test, vect, "SUMMARY_EN_ LEMMA™)

'year'
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Check the input matrix

vectorise dataset(X_train, vect, "SUMMARY EN LEMMA", dataframe=True)

10 150 48kmph 4x4 s56kmph 64kmph 72kmph abil
2532 0 O O 0 0 0 0 0
6200 O O 0 0 0 0 0 0
2561 O O 0 0 1 1 0 0
6382 0 O 0 0 0 0 0 0
2060 0 O 0 0 0 0 0 0
6356 O O o) o) o) o) o) o)

4169 TOWS x 1008 columns
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Make & inspect the model

num_features = X_train_bow.shape[1]
model = build_model(num_features, num_cats)
model.summary()

Model: "sequential 2"

Layer (type) Output Shape Param #
dense 4 (Dense) (None, 100) 100,900
dense 5 (Dense) (None, 3) 303

Total params: 101,203 (395.32 KB)
Trainable params: 101,203 (395.32 KB)
Non-trainable params: 0 (0.00 B)
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Fit & evaluate the model

es = EarlyStopping(patience=1, restore_best_weights=True,
monitor="val_accuracy", verbose=2)

%time hist = model.fit(X_train_bow, y_train, epochs=10, \
callbacks=[es], validation_data=(X_val_bow, y_val), verbose=0);

Epoch 3: early stopping
Restoring model weights from the end of the best epoch: 2.

CPU times: user 1.91 s, sys: 288 ms, total: 2.2 s
wall time: 1.53 s

model.evaluate(X_train_bow, y_train, verbose=0)
[0.09055039286613464, 0.9851283431053162, ©0.9990405440330505]
model.evaluate(X_val_bow, y_val, verbose=0)

[3.8409152030944824, 0.9402877688407898, 0.9928057789802551]
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Overview

Popular methods for converting text into
numbers include:

e One-hot encoding
e Bag of words
o TF-IDF

o Word vectors (transfer learning)

IF T ASSIGN NUMBERS
TO EACH OF THESE THINGS,
THEN IT BECOMES DATA,
AND I CAN DO MATH ON IT!

THE SAME BASIC IDEA UNDERLIES
GODELS INCOMPLETENESS THEOREM
AND ALL BAD DATA SCIENCE.

Assigning Numbers

Source: Randall Munroe (2022), xked #2610: Assigning Numbers.


https://xkcd.com/2610/

-y

Word Vectors

e One-hot representations capture word ‘existence’ only, whereas
word vectors capture information about word meaning as well as
location.

e This enables deep learning NLP models to automatically learn
linguistic features.

e WordzVec & GloVe are popular algorithms for generating word
embeddings (i.e. word vectors).
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Word Vectors

[lustrative word vectors.
Source: Krohn (2019), Deep Learning lllustrated, Figure 2-6.




Remember this diagram?

Embeddings will gradually improve during training.

];l / Source: Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and ‘TensorFlow, 2nd Edition, Figure 13-4.
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Word2Vec

Key idea: You're known by the company you keep.

Two algorithms are used to calculate embeddings:

o Conlinuous bag of words: uses the context words to predict the
target word

o Skip-gram: uses the target word to predict the context words

Predictions are made using a neural network with one hidden layer.

Through backpropagation, we update a set of “weights” which
become the word vectors.

Paper: Mikolov et al. (2013), Efficient estimation of word representations in vector space, arXiv:1301.3781.
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https://arxiv.org/pdf/1301.3781.pdf

-y

Word2Vec training methods

A quick brown fox jumps over the lazy dog

Continuous bag of words is a center word prediction task

A quick brown fox jumps over the lazy dog

Skip-gram is a neighbour word prediction task

Q Suggested viewing

Computerphile (2019), Vectoring Words (Word Embeddings), YouTube (16 mins).

Source: Amit Chaudhary (2020), Self Supervised Representation Learning in NLP.
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https://youtu.be/gQddtTdmG_8
https://amitness.com/2020/05/self-supervised-learning-nlp/
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The skip-gram network

The skip-gram model. Both the input vector = and the output y are one-hot encoded word
representations. The hidden layer is the word embedding of size N.

Source: Lilian Weng (2017), Learning Word Embedding, Blog post, Figure 1.



https://lilianweng.github.io/posts/2017-10-15-word-embedding/
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Word Vector Arithmetic

Relationships between words
becomes vector math.

[lustrative word vector arithmetic

You remember vectors, right?
Screenshot from Word2viz

];[ / Sources: PressBooks, College Physics: OpenStax, Chapter 17 Figure 9, and Krohn (2019), Deep Learning lllustrated, Figures 2-7 & 2-8.


https://lamyiowce.github.io/word2viz/
https://pressbooks.bccampus.ca/collegephysics/chapter/vector-addition-and-subtraction-graphical-methods/
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Pretrained word embeddings

I'pip install gensim

Load wordz2vec embeddings trained on Google News:

import gensim.downloader as api
wv = api.load('word2vec-google-news-300")

When run for the first time, that downloads a huge file:

gensim_dir = Path("~/gensim-data/").expanduser()
[str(p) for p in gensim_dir.iterdir()]

['/home/plaub/gensim-data/information.json',
'/home/plaub/gensim-data/word2vec-google-news-300"]

next(gensim_dir.glob("*/*.gz")).stat().st_size / 1024%*3
1.6238203644752502
f"The size of the vocabulary is {len(wv)}"

'The size of the vocabulary is 3000000’
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Treat wv like a dictionary

array([-1.

300

wv["pizza"]

26e-01, 2.
.03e-01, -3
.42e-01, 8.
.81e-01, 1
.25e-02, -9
.87e-02, -2.
.46e-01, -1
.00e-01, 8.
.03e-02, 1.
.95e-01, -2
.19e-01, 1
.30e-01, -4.
.56e-02, 9.
.23e-02, -4
.93e-01, -4.
.42e-02, -3
.68e-02, 5
.49e-02, 1.
.58e-01, 8.

54e-02, 1
.95e-04, 1
4Qe-02, 6.
.90e-02, -5
.42e-02, -9
70e-01, 1
.57e-02, 1
35e-02, -4.
53e-01, -1
.03e-01, 3
.95e-01, -8.
67e-01, 1.
13e-02, -8.
.80e-01, 3.
22e-01, -1
.22e-01, -7.
.00e-02, 1
53e-01, 2.
20e-02, -5

len(wv["pizza"])

.67e-01,
.22e-01,

.08e-02,
.72e-02,
.81e-01,
.82e-05,

.21e-01,
.01e-01,

69e-02,

74e-02,

NPFRPRFRPRWWNEP>ON PO

79e-02,
69e-01,
69e-02, -1
78e-02, -1

.06e-01, 3.
52e-02, -8.
.28e-01, -7

60e-01, -1

.98e-02, -2.

.51e-01, -7.
.32e-02, 1.
.68e-01, -3.
.03e-03, 1.
.00e-01, 1.
.25e-01, -3.
.07e-01, -1
.11e-02, -2.
.75e-01, -5.
.01e-01, -3.
.58e-01, 1.
.23e-02, 1.
.20e-01, -3
.36e-01, -1
55e-01, 1.
25e-02, -2
42e-02, -1
.05e-01, 3.
34e-01, -3

67e-02, 1
73e-01, -6
71e-02, -5
77e-01, 6
15e-01, 1
17e-02, -5
.26e-01, -2
62e-01, 1.
69e-02, -4.
18e-01, -9
52e-02, -1
55e-01, 1
.09e-01, -2.
.03e-01, -2
67e-01, -3
.91e-01, -1
.31e-01, -2
57e-01, -4.
.22e-01, -1

.29e-01,
.84e-02,
.57e-02,
.49e-02,
.03e-01,
.49e-02,
.83e-01,

7/0e-01,
/6e-03,

.03e-02,
.60e-01,
.08e-01,

6le-02,

.91e-01,
.63e-03,
.26e-01,
.46e-01,

30e-02,

.26e-01,
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Find nearby word vectors

wv.most_similar("Python")

[('Jython', 0.6152505874633789),
('Perl_Python', 0.5710949897766113),
('IronPython', 0.5704679489135742),
('scripting_languages', 0.5695090889930725),
('"PHP_Perl', 0.5687724947929382),
('Java_Python', 0.5681070685386658),

('"PHP', 0.5660915970802307),
('Python_Ruby', 0.5632461905479431),
('visual_Basic', 0.5603480339050293),
('Perl', 0.5530891418457031)]

wv.similarity("Python", "Java")
0.46189708

wv.similarity("Python", "sport")
0.08406468

wv.similarity("Python", "R")

0.066954285

Fun fact: Gensim’s most_similar uses Spotify’s annoy library (“Approximate Nearest Neighbors Oh Yeah”)
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What does ‘similarity’ mean?

The ‘similarity’ scores

wv.similarity("Sydney", "Melbourne")

0.8613987

are normally based on cosine distance.

wv["Sydney"]
wv[ "Melbourne"]
ot(y) / (np.linalg.norm(x) * np.linalg.norm(y))

X < X
[ N | B |

0.86139864
wv.similarity("Sydney", "Aarhus")

0.19079602
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Weng’s GoT Word2Vec

In the GoT word embedding space, the top similar words to “king’

and “queen” are:

model.most_similar("king")

('kings', 0.897245)
('baratheon', 0.809675)
('son', ©.763614)
('robert', 0.708522)
('lords', 0.698684)
("joffrey', 0.696455)
('prince', ©0.695699)
('brother', 0.685239)
('aerys', 0.684527)
('stannis', 0.682932)

model.most_similar("queen")

('cersei', 0.942618)
("joffrey', 0.933756)
('margaery', 0.931099)
('sister', 0.928902)
('"prince', 0.927364)
('uncle', 0.922507)
('varys', 0.918421)
('ned', ©0.917492)
('melisandre', 0.915403)
('robb', ©.915272)

[;[ / Source: Lilian Weng (2017), Learning Word Embedding, Blog post.

9
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https://lilianweng.github.io/posts/2017-10-15-word-embedding/

-y

Combining word vectors

You can summarise a sentence by averaging the individual word
vectors.

sv = (wv["Melbourne"] + wv["has"] + wv["better"] + wv["coffee"]) / 4
len(sv), sv[:5]

(300, array([-0.08, -0.11, -0.16, 0.24, 0.06], dtype=float32))

As it turns out, averaging word embeddings is a surprisingly
effective way to create word embeddings. It’s not perfect (as you’ll

see), but it does a strong job of capturing what you might perceive
to be complex relationships between words.

Source: Trask (2019), Grokking Deep Learning, Chapter 12.
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Recipe recommender

Recipes are the average of the word vectors of Nearest neighbours used to classify new recipes
the ingredients. as potentially delicious.

Source: Duarte O.Carmo (2022), A recipe recommendation system, Blog post.



https://duarteocarmo.com/blog/scandinavia-food-python-recommendation-systems
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Analogies with word vectors

Obama is to Americaas  is to Australia.
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Testing more assoclations

wv.most_similar(positive=["France", "London"], negative=["Paris"])

[('Britain', 0.7368935346603394),

('"UK', 0.6637030839920044),

('England', 0.6119861602783203),
('United_Kingdom', 0.6067784428596497),
('Great_Britain', 0.5870823860168457),
('Britian', 0.5852951407432556),
('Scotland', 0.5410018563270569),
('British', 0.5318332314491272),
('Europe', 0.5307435989379883),
('East_Midlands', 0.5230222344398499)]
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Quickly get to bad associations

wv.most_similar(positive=["King", "woman"], negative=["man"])

[('Queen', 0.5515626668930054),
('Oprah_BFF_Gayle', 0.47597548365592957),
('Geoffrey_Rush_Exit', 0.46460166573524475),
('Princess', 0.4533674716949463),
('Yvonne_Stickney', 0.4507041573524475),
('L._Bonauto', 0.4422135353088379),
('gal_pal_Gayle', 0.4408389925956726),
('Alveda C.', 0.4402790665626526),
('Tupou_V.', 0.4373864233493805),
('K._Letourneau', 0.4351031482219696)]

wv.most_similar(positive=["computer_programmer", "woman"], negative=["man"])

[("homemaker', 0.5627118945121765),
("housewife', 0.5105047225952148),
('graphic_designer', 0.505180299282074),
('schoolteacher', 0.497949481010437),
('businesswoman', 0.493489146232605),
('paralegal', 0.49255111813545227),
('registered_nurse', 0.4907974898815155),
('saleswoman', 0.4881627559661865),
('electrical_engineer', 0.4797725975513458),
('mechanical_engineer', 0.4755399227142334)]
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Bias in NLLP models

The Verge (2016), Twitter taught Microsoft’s Al
chatbot to be a racist a****** in less than a day.

76 /88

... there are serious questions to answer,
like how are we going to teach Al using
public data without incorporating the
worst traits of humanity? If we create bots
that mirror their users, do we care if their
users are human trash? There are plenty
of examples of technology embodying —
either accidentally or on purpose — the
prejudices of society, and Tay’s adventures
on Twitter show that even big
corporations like Microsoft forget to take
any preventative measures against these
problems.


https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
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The library cheats a little bit

wv.similar_by_vector(wv["computer_programmer"] - wv["man"] + wv["woman"])

[('computer_programmer', 0.910581111907959),
("homemaker', 0.5771316289901733),
('schoolteacher', 0.5500192046165466),
('graphic_designer', 0.5464698672294617),
('mechanical_engineer', 0.539836585521698),
('electrical_engineer', 0.5337055325508118),
("housewife', 0.5274525284767151),
('programmer', 0.5096209049224854),
('businesswoman', 0.5029540657997131),
('keypunch_operator', 0.4974639415740967)]

To get the ‘nice’ analogies, the .most_similar ignores the input
words as possible answers.

# ignore (don't return) keys from the input

result = [
(self.index_to_key[sim + clip_start], float(dists[sim]))
for sim in best if (sim + clip_start) not in all_keys

Source: gensim, gensim/models/keyedvectors.py, lines 853-857.
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Lecture Outline

e Natural Language Processing

e (Car Crash Police Reports

e Text Vectorisation

e Bag Of Words

e Limiting The Vocabulary

e Intelligently Limit The Vocabulary
e Word Embeddings

e Word Embeddings II

e Car Crash NLP Part 11

Dataset source: Dr Jiirg Schelldorfer’s GitHub.



https://github.com/JSchelldorfer/ActuarialDataScience/blob/master/12%20-%20NLP%20Using%20Transformers/Actuarial_Applications_of_NLP_Part_1.ipynb
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Predict injury severity

features = df["SUMMARY_EN"]
target = LabelEncoder().fit_transform(df["INJSEVB"])

X_main, X_test, y_main, y_test = \

train_test_split(features, target, test_size=0.2, random_state=1)
X_train, X_val, y_train, y_val = \

train_test_split(X_main, y_main, test_size=0.25, random_state=1)
X_train.shape, X_val.shape, X_test.shape

((4169,), (1390,), (1390,))
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Using Keras TextVectorization

max_tokens = 1 _000

vect = layers.TextVectorization(
max_tokens=max_tokens,
output_mode="tf_idf",
standardize="1lower_and_strip_punctuation",

)

vect.adapt(X_train)
vocab = vect.get_vocabulary()

X_train_txt = vect(X_train)
X_val_txt = vect(X_val)
X_test _txt = vect(X_test)

print(vocab[:50])

['[UNK]', 'the', 'was', 'a', 'to', 'of', 'and', 'in', 'driver', 'for', 'this', 'vehicle',
‘critical', 'lane', 'he', 'on', 'with', 'that', 'left', 'roadway', 'coded', 'she', ‘'event',
‘crash', 'not', 'at', 'intersection', 'traveling', 'right', 'precrash', ‘'as', 'from', 'were',
'by', 'had', 'reason', 'his', 'side', 'is', 'front', 'her', 'traffic', 'an', 'it', 'two',

'speed', 'stated', 'one', 'occurred', 'no']
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The TF-IDF vectors

pd.DataFrame(X_train_txt, columns=vocab, index=X_train.index)

|[UNK] the was a to
2532 121.857970  42.274662 10.395400 10.395400 11.785541 8.32
6209 72590237  17.325062  10.305409 5.544218  4.159003  5.54¢
2501  124.450600 30.493108 15.246500 11.088436 0.012472 7.62
6882 75.188005 20.790817 4.851101 7.623300  0.012472 4.85
2060  147.785202 27.028063 13.167518  6.237246  8.310205 4.85
6356 75.188005 15.246599 0.702381  8.316327 7.025038  5.54¢

4169 TOWS x 1000 columns
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Feed TF-IDF into an ANN

random.seed(42)

tfidf_model = keras.models.Sequential([
layers.Input((X_train_txt.shapel[1],)),

layers.Dense(250, "relu"),
layers.Dense(1, "sigmoid")

D

tfidf_model.compile("adam", "binary_crossentropy", metrics=["accuracy"])

tfidf_model.summary()

Model: "sequential 3"

dense 7 (Dense)

Layer (type) Output Shape Param #
dense 6 (Dense) ( , 250) 250,250
( , 1) 251

Total params: 250,501 (978.52 KB)

Trainable params: 250,501 (978.52 KB)

Non-trainable params: 0 (0.00 B)
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Fit & evaluate

es = keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True,
monitor="val_accuracy", verbose=2)

if not Path("tfidf-model.keras").exists():
tfidf_model.fit(X_train_txt, y_train, epochs=1_000, callbacks=es,
validation_data=(X_val_txt, y_val), verbose=0)
tfidf_model.save("tfidf-model.keras")
else:
tfidf_model = keras.models.load model("tfidf-model.keras")

tfidf_model.evaluate(X_train_txt, y_train, verbose=0, batch_size=1_000)
[0.11705566942691803, 0.9575437903404236]
tfidf_model.evaluate(X_val_txt, y_val, verbose=0, batch_size=1_000)

[0.3212660849094391, 0.8848921060562134]
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Keep text as sequence of tokens

max_length 500

max_tokens 1 000

vect = layers.TextVectorization(
max_tokens=max_tokens,
output_sequence_length=max_length,
standardize="1lower_and_strip_punctuation",

)

vect.adapt(X_train)
vocab = vect.get_vocabulary()

X_train_txt = vect(X_train)
X_val_txt = vect(X_val)
X_test_txt = vect(X_test)

print(vocab[:50])

['', '[UNK]', 'the', 'was', 'a', 'to', 'of', 'and', 'in', 'driver', 'for', 'this',
‘critical', 'lane', 'he', 'on', 'with', 'that', 'left', 'roadway', 'coded', 'she',
‘crash', 'not', 'at', 'intersection', 'traveling', 'right', 'precrash', 'as',

'by', 'had', 'reason', 'his', 'side', 'is', 'front', 'her', 'traffic', ‘'an', 'it',

'speed', 'stated', 'one', 'occurred']

'vehicle',
'event',

"from', 'were',

"two',
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X_train_txt[0]

6,
51,
51,

237,
549,
400,
24,
118,
54,

24,

b,
208,
208,

33,
382,

49,
564,
65,
65,
153,
88,
58,
4,
14,
1,
27,
241,
12,
8,
1,
19,
73,
3,

8,
971,
235,
235,
192,

46,
33,
402,
101,

b,

190,
81,
17,

2,
168,
246,

71,
113,

2, 253, 219,
27, 2, 27,
54, 14, 20,
54, 14, 20,
20, 3, 107,

3, 207, 63,
50, 172, 251,

970, 1, 1,

311, 10, 2,

308, 342, 1,
44, 598, 5,
19, 31, 1,

1, 390, 1,
410, 6, 2,
2, 27, 7,
73, 83, 64,
57, 5, 82,
8, 276, 258,

<tf.Tensor: shape=(500,), dtype=int64, numpy=
array([ 11,

6,
568,
867,
178,

7,
185,

84,

A sequence of integers

75,

165,

422,

928,

192,
183,
676,
b,
42,
60,

269,
14,

S FHFNNEL NNV

410,
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Feed LSTM a sequence of one-hots

from keras.layers import CategoryEncoding, Bidirectional, LSTM

random.seed(42)

one_hot_model = Sequential([Input(shape=(max_length,), dtype="int64"),

CategoryEncoding(num_tokens=max_tokens, output_mode="one_hot"),

Bidirectional(LSTM(24)),

Dense(1, activation="sigmoid")])
one_hot_model.compile(optimizer="adam",

loss="binary_crossentropy", metrics=["accuracy"])

one_hot_model.summary()

Model: "sequential_ 4"

dense 8 (Dense)

Layer (type) Output Shape Param #

category encoding ( , 500, 1000) 0

(CategoryEncoding)

bidirectional (Bidirectional) ( , 48) 196,800
( , 1) 49

Total params: 196,849 (768.94 KB)

Trainable params: 196,849 (768.94 KB)

Non-trainable params: 0 (0.00 B)
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Fit & evaluate

es = keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True,
monitor="val_accuracy", verbose=2)

if not Path("one-hot-model.keras").exists():
one_hot_model.fit(X_train_txt, y_train, epochs=1_000, callbacks=es,
validation_data=(X_val_txt, y_val), verbose=0);
one_hot_model.save("one-hot-model.keras")
else:
one_hot_model = keras.models.load model("one-hot-model.keras")

one_hot_model.evaluate(X_train_txt, y_train, verbose=0, batch_size=1_000)
[0.3188040852546692, 0.8918206095695496 ]
one_hot_model.evaluate(X_val_txt, y_val, verbose=0, batch_size=1_000)

[0.37093353271484375, 0.8776978254318237]
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Custom embeddings

from keras.layers import Embedding

embed_1stm = Sequential([Input(shape=(max_length,), dtype="int64"),
Embedding(input_dim=max_tokens, output_dim=32, mask_zero=True),
Bidirectional(LSTM(24)),
Dense(1, activation="sigmoid")])

embed_lstm.compile("adam", "binary_crossentropy", metrics=["accuracy"])

embed_Tlstm.summary()

Model: "sequential 5"

Layer (type) Output Shape Param #
embedding (Embedding) ( , 500, 32) 32,000
bidirectional 1 (Bidirectional) ( , 48) 10,944
dense 9 (Dense) ( , 1) 49

Total params: 42,993 (167.94 KB)
Trainable params: 42,993 (167.94 KB)
Non-trainable params: 0 (0.00 B)
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Fit & evaluate

es = keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True,

monitor="val_accuracy", verbose=2)

if not Path("embed-lstm.keras").exists():
embed_lstm.fit(X_train_txt, y_train, epochs=1_000, callbacks=es,
validation_data=(X_val_txt, y_val), verbose=0);
embed_1stm.save("embed-1lstm.keras")
else:
embed _1stm = keras.models.load model("embed-1lstm.keras")

embed_lstm.evaluate(X_train_txt, y_train, verbose=0, batch_size=1_000)
[0.27049171924591064, 0.9030942916870117]

embed_lstm.evaluate(X_val_txt, y_val, verbose=0, batch_size=1_000)
[0.36852043867111206, 0.8553956747055054]

embed_lstm.evaluate(X_test_txt, y_test, verbose=0, batch_size=1_000)

[0.3872850239276886, 0.8467625975608826 ]
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Package Versions

from watermark import watermark
print(watermark(python=True, packages="keras,matplotlib,numpy,pandas,seaborn,scipy,torch

Python implementation: CPython

Python version : 3.11.9
IPython version : 8.24.0
keras : 3.3.3

matplotlib: 3.9.0

numpy : 1.26.4

pandas 2.2.2

seaborn : 0.13.2

scipy : 1.11.0

torch 2.3.1

tensorflow: 2.16.1

tf_keras 2.16.0
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Glossary

e bag of words
e lemmatization
® n-grams

e one-hot embedding

TE-1DF
vocabulary
word embedding

wordavec




